The Future of AI UX: Why Chat Isn’t Enough

For the last two years, AI design has been dominated by chat. Chatbots, copilots, and assistants are all different names for the same experience. We type, it responds. It feels futuristic because it talks back.

But here’s the truth: chat is not the future of AI.

It’s the training wheels phase of intelligent interaction, a bridge from how we once used computers to how we soon will. The real future is intent-based AI, where systems understand what we need before we even ask. That’s the leap that will separate enterprises merely using AI from those transformed by it.

Chat-Based UX: The Beginning, Not the Destination

Chat has been a brilliant entry point. It’s intuitive, universal, and democratizing. Employees can simply ask questions in plain language:

“Summarize this week’s client updates.”
“Generate a response to this RFP.”
“Explain this error in our data pipeline.”

And the AI responds. It’s accessible. It’s flexible. It’s even fun.

But it’s also inherently reactive. The user still carries the cognitive load. You have to know what to ask. You have to remember context. You have to steer the conversation toward the output you want. That works for casual exploration, but in enterprise environments, it’s a tax on productivity.

The irony is that while chat interfaces promise simplicity, they actually add a new layer of friction. They make you the project manager of your own AI interactions.

In short, chat is useful for discovery, but it’s inefficient for doing.

The Rise of Intent-Based AI

Intent-based UX flips the equation. Instead of waiting for a prompt, the system understands context, interprets intent, and takes initiative.

It doesn’t ask, “What do you want to do today?”
It knows, “You’re preparing for a client meeting, here’s what you’ll need.”

This shift moves AI from a tool you operate to an environment you inhabit.

Example: The Executive Assistant Reimagined

An executive with a chat assistant types:

“Create a summary of all open client escalations for tomorrow’s board meeting.”

An executive with an intent-based assistant never types anything. The AI:

  • Detects the upcoming board meeting from the calendar.
  • Gathers all open client escalations.
  • Drafts a slide deck and an email summary before the meeting.

The intent, prepare for the meeting, was never stated. It was inferred.

That’s the difference between a helpful assistant and an indispensable one.


Intent-Based Systems Drive Enterprise Productivity

This isn’t science fiction. The foundational pieces already exist: workflow signals, event streams, embeddings, and user behavior data. The only thing missing is design courage, the willingness to move beyond chat and rethink what a “user interface” even means in an AI-first enterprise.

Here’s what that shift enables:

  • Proactive workflows: A project manager receives an updated burn chart and recommended staffing adjustments when velocity drops, without asking for a report.
  • Contextual automation: A tax consultant reviewing a client case automatically sees pending compliance items, with drafts already prepared for submission.
  • Personalized foresight: A sales leader opening Salesforce doesn’t see dashboards; they see the top three accounts most likely to churn, with a prewritten email for each.

When designed around intent, AI stops being a destination. It becomes the invisible infrastructure of productivity.

Why Chat Will Eventually Fade

There’s a pattern in every major computing evolution. Command lines gave us precision but required expertise. GUIs gave us accessibility but required navigation. Chat gives us flexibility but still requires articulation.

Intent removes the requirement altogether.

Once systems understand context deeply enough, conversation becomes optional. You won’t chat with your CRM, ERP, or HR system. You’ll simply act, and it will act with you.

Enterprises that cling to chat interfaces as the primary AI channel will find themselves trapped in “talking productivity.” The real leap will belong to those who embrace systems that understand and anticipate.

What Intent-Based UX Unlocks

Imagine a workplace where:

  • Your data tools automatically build dashboards based on the story your CFO needs to tell this quarter.
  • Your engineering platform detects dependencies across services and generates a release readiness summary every Friday.
  • Your mobility platform (think global compliance, payroll, or travel) proactively drafts reminders, filings, and client updates before deadlines hit.

This isn’t about convenience. It’s about leverage.
Chat helps employees find information. Intent helps them create outcomes.

The Takeaway

The next phase of enterprise AI design is not conversational. It’s contextual.

Chatbots were the classroom where we learned to speak to machines. Intent-based AI is where machines finally learn to speak our language — the language of goals, outcomes, and priorities.

The companies that build for intent will define the productivity curve for the next decade. They won’t ask their employees to chat with AI. They’ll empower them to work alongside AI — fluidly, naturally, and with purpose.

Because the future of AI UX isn’t about talking to your tools.
It’s about your tools understanding what you’re here to achieve.

How AI Is Opening New Markets for Professional Services

The professional services industry, including consulting, legal, accounting, audit, tax, advisory, engineering, and related knowledge-intensive sectors, stands on the cusp of transformation. Historically, many firms have viewed AI primarily as a tool to boost efficiency or reduce cost. But increasingly, forward-thinking firms are discovering that AI enables them to expand into new offerings, customer segments, and business models.

Below I survey trends, opportunities, challenges, and strategic considerations for professional services firms that aim to go beyond optimization and into market creation.

Key Trends Shaping the Opportunity Landscape

Before diving into opportunities, it helps to frame the underlying dynamics.

Rapid Growth in AI-Driven Markets

  • The global Artificial Intelligence as a Service (AIaaS) market is projected to grow strongly, from about USD 16.08 billion in 2024 to USD 105 billion by 2030 (CAGR ~36.1%) (grandviewresearch.com)
  • Some forecasts push even more aggressively. Markets & Markets estimates AIaaS will grow from about USD 20.26 billion in 2025 to about USD 91.2 billion by 2030 (CAGR ~35.1%) (marketsandmarkets.com)
  • The AI consulting services market is also booming. One forecast places the global market at USD 16.4 billion in 2024, expanding to USD 257.6 billion by 2033 (CAGR ~35.8%) (marketdataforecast.com)
  • Another projection suggests the AI consulting market could reach USD 58.19 billion by 2034, from about USD 8.75 billion in 2024 (zionmarketresearch.com)
  • Meanwhile, the professional services sector itself is expected to grow by USD 2.07 trillion between 2024 and 2028 (CAGR ~5.7%), with digital and AI-led transformation as a core driver (prnewswire.com)

These macro trends suggest that both supply (consulting and integration) and demand (client AI adoption) are expanding in parallel, creating a rising tide on which professional services can paddle into new spaces.

From Efficiency to Innovation and Revenue Growth

In many firms, early AI adoption has followed a standard path: use tools to automate document drafting, data extraction, analytics, or search. But new reports and surveys suggest that adoption is maturing into more strategic use.

  • The Udacity “AI at Work” research finds a striking “trust gap.” While about 90% of workers use AI in some form, fewer trust its outputs fully. (udacity.com) That suggests substantial room for firms to intervene through governance, assurance, audits, training, and oversight services.
  • The Thomson Reuters 2025 Generative AI in Professional Services report notes that many firms are using GenAI, but far fewer are tracking ROI or embedding it in strategy (thomsonreuters.com)
  • An article from OC&C Strategy observes that an over-focus on “perfect bespoke solutions” can stall value capture; instead, a pragmatic “good-but-not-perfect” deployment mindset allows earlier revenue and learning (occstrategy.com)
  • According to RSM, professional services firms are rethinking workforce models as AI automates traditionally junior tasks, pressing senior staff into more strategic work (rsmus.com)

These signals show that we are approaching a second wave of AI in professional services, where firms seek to monetize AI not just as a cost lever but as a growth engine.

Four Categories of Market-Building Opportunity

Here are ways professional services firms can go beyond automation to build new markets.

Opportunity TypeDescriptionExamples / Use Cases
1. AI-Powered Advisory and “AI-as-a-Service” OfferingsFirms package domain expertise and AI models into products or subscription servicesA legal firm builds a contract-analysis engine and offers subscription access; accounting firms provide continuous anomaly detection on client ERP data
2. Assurance, Audit, and AI Governance ServicesAs AI becomes embedded in client systems, demand for auditing, validation, model governance, compliance, and trust frameworks will growAuditing AI outputs in regulated sectors, reviewing model fairness, or certifying an AI deployment
3. Vertical or Niche Micro-Vertical AI SolutionsRather than broad horizontal tools, build AI models specialized for particular industries or subdomainsA consulting firm builds an AI tool for energy forecasting in renewable businesses, or an AI model for real estate appraisal
4. Platform, API, or Marketplace EnablementFirms act as intermediaries or enablers, connecting client data to AI tools or building marketplaces of agentic AI servicesA tax firm builds a plugin marketplace for tax-relevant AI agents; a legal tech incubator curates AI modules

Let’s look at each in more depth.

1. AI-Powered Advisory or Embedded AI Products

One of the most direct routes is embedding AI into the service deliverable, turning part of the deliverable from human labor to intelligent automation, and then charging for it. Some possible models:

  • Subscription or SaaS model: tax, audit, or legal firms package their AI engine behind a SaaS interface and charge clients on a recurring basis.
  • Outcome-based models: pricing tied to detected savings or improved accuracy from AI insights.
  • Embedded models: AI acts as a “co-pilot” or second reviewer, but service teams retain oversight.

By moving in this direction, professional services firms evolve into AI product companies with recurring revenues instead of purely project-based revenue.

A notable example is the accounting roll-up Crete Professionals Alliance, which announced plans to invest $500M to acquire smaller firms and embed OpenAI-powered tools for tasks such as audit memo writing and data mapping. (reuters.com) This shows how firms see value in integrating AI into service platforms.

2. Assurance, Audit, and AI Governance Services

As clients deploy more AI, they will demand greater trust, transparency, and compliance, especially in regulated sectors such as finance, healthcare, and government. Professional services firms are well positioned to provide:

  • AI audits and validation: ensuring models work as intended, detecting bias, assessing robustness under adversarial conditions.
  • Governance and ethics frameworks: helping clients define guardrails, checklists, model review boards, or monitoring regimes.
  • Regulation compliance and certification: as governments begin regulating high-risk AI, firms can audit or certify client systems.
  • Trust as a service: maintaining ongoing oversight, monitors, and health-checks of deployed AI.

Because many organizations lack internal AI expertise or governance functions, this becomes a natural extension of traditional audit, risk, or compliance practices.

3. Vertical or Niche AI Solutions

A generic AI tool is valuable, but its economics often require scale. Professional services firms can differentiate by combining domain depth, industry data, and AI. Some advantages:

  • Better accuracy and relevance: domain knowledge helps build more precise models.
  • Reduced client friction: clients are comfortable trusting domain specialists.
  • Fewer competitors: domain-focused models are harder to replicate.

Examples:

  • A consulting firm builds an AI model for commodity price forecasting in mining clients.
  • A legal practice builds a specialized AI tool for pharmaceutical patent litigation.
  • An audit firm builds fraud detection models tuned to logistics or supply chain clients.

The combination of domain consulting and AI product is a powerful differentiator.

4. Platform, Agentic, or Marketplace Models

Instead of delivering all AI themselves, firms can act as platforms or intermediaries:

  • Agent marketplace: firms curate AI “agents” or microservices that clients can pick, configure, and combine.
  • Data and AI orchestration layers: firms build middleware or connectors that integrate client systems with AI tools.
  • Ecosystem partnerships: incubate AI startups or partner with AI vendors, taking a share of commercialization revenue.

In this model, the professional services firm becomes the AI integrator or aggregator, operating a marketplace that others plug into. Over time, this can generate network effects and recurring margins.

What Existing Evidence and Practitioner Moves Show

To validate that these ideas are more than theoretical, here are illustrative data points and real-world moves.

  • Over 70% of large professional services firms plan to integrate AI in workflows by 2025 (Thomson Reuters).
  • In a survey by Harvest, smaller firms report agility in adopting AI and experimentation, possibly making them early movers in new value models. (getharvest.com)
  • Law firms such as Simmons & Simmons and Baker McKenzie are converting into hybrid legal-tech consultancies, offering AI-driven legal services and consultative tech advice. (ft.com)
  • Accenture has rebranded its consulting arm to “reinvention services” to highlight AI-driven transformation at scale. (businessinsider.com)
  • RSM US announced plans to invest $1 billion in AI over the next three years to build client platforms, predictive models, and internal infrastructure. (wsj.com)
  • In Europe, concern is rising that AI adoption will be concentrated in large firms. Ensuring regional and mid-tier consultancies can access infrastructure and training is becoming a policy conversation. (europeanbusinessmagazine.com)

These moves show that leading firms are actively shifting strategy to capture AI-driven revenue models, not just internal efficiency gains.

Strategic Considerations and Challenges

While the opportunity is large, executing this transformation requires careful thinking. Below are key enablers and risks.

Key Strategic Enablers

  1. Leadership alignment and vision
    AI transformation must be anchored at the top. PwC’s predictions emphasize that AI success is as much about vision as adoption. (pwc.com)
  2. Data infrastructure and hygiene
    Clean, well-governed data is the foundation. Without that, AI models falter. OC&C warns that focusing too much on perfect models before data readiness may stall adoption.
  3. Cross-disciplinary teams
    Firms need domain specialists, data scientists, engineers, legal and compliance experts, and product managers working together, not in silos.
  4. Iterative, minimum viable product (MVP) mindset
    Instead of waiting for a perfect AI tool, launch early, learn, iterate, and scale.
  5. Trust, transparency, and ethics
    Given the trust gap highlighted by Udacity, firms need to embed explainability, human oversight, monitoring, and user education.
  6. Change management and talent upskilling
    Legacy staff need to adapt. As firms automate junior tasks, roles shift upward. RSM and others are already refocusing talent strategy.

Challenges and Risks

  • Regulation and liability: increasing scrutiny on AI’s safety, fairness, privacy, and robustness means potential legal risk for firms delivering AI-driven services.
  • Competition from tech-first entrants: pure AI-native firms may outpace traditional firms in speed and innovation.
  • Client reluctance and trust issues: many clients remain cautious about relying on AI, especially for mission-critical decisions.
  • ROI measurement difficulty: many firms currently fail to track ROI for AI initiatives (according to Thomson Reuters).
  • Skill and talent shortage: hiring and retaining AI-capable talent is a global challenge.
  • Integration complexity: AI tools must integrate with legacy systems, data sources, and client workflows.

Suggested Roadmap for Firms

Below is a high-level phased roadmap for a professional services firm seeking to evolve from AI-enabled efficiency to market creation.

  1. Diagnostic and capability audit
    • Assess data infrastructure, AI readiness, analytics capabilities, and talent gaps.
    • Map internal use cases (where AI is already helping) and potential external transitions.
  2. Pilot external offerings or productize internal tools
    • Identify one or two internal tools (for example, document summarization or anomaly detection) and wrap them as client offerings.
    • Test with early adopters, track outcomes, pricing, and adoption friction.
  3. Develop governance and assurance capability
    • Build modular governance frameworks (explainability, audit trails, human review).
    • Offer these modules to clients as part of service packages.
  4. Expand domain-specific products and verticals
    • Use domain expertise to build specialized AI models for client sectors.
    • Build go-to-market and sales enablement geared to those verticals.
  5. Launch platform or marketplace approaches
    • Once you have multiple AI modules, offer them via API, plugin, or marketplace architecture.
    • Partner with technology vendors and startup ecosystems.
  6. Scale, monitor, and iterate
    • Invest in legal, compliance, and continuous monitoring.
    • Refine pricing, SLAs, user experience, and robustness.
    • Use client feedback loops to improve.
  7. Institutionalize AI culture
    • Upskill all talent, both domain and technical.
    • Embed reward structures for productization and value creation, not just billable hours.

Why This Matters for Clients and Firms

  • Clients are demanding more value, faster insight, and continuous intelligence. They will value service providers who deliver outcomes, not just advice.
  • Firms that remain purely labor or consulting based risk commoditization, margin pressure, and competition from AI-native entrants. The firms that lean into AI productization will differentiate and open new revenue streams.
  • Societal and regulatory forces will strengthen the demand for trustworthy, auditable, and ethically-built AI systems, and professional service firms are well placed to help govern those systems.

Conclusion

AI is not just another technology wave for professional services. It is a market reset. Firms that continue to treat AI as a back-office efficiency play will slowly fade into irrelevance, while those that see it as a platform for creating new markets will define the next generation of the industry.

The firms that win will not be the ones with the best slide decks or the largest data lakes. They will be the ones that productize their expertise, embed AI into their client experiences, and lead with trust and transparency as differentiators.

AI is now the new delivery model for professional judgment. It allows firms to turn knowledge into scalable and monetizable assets, from predictive insights and continuous assurance to entirely new advisory categories.

The choice is clear: evolve from service provider to AI-powered market maker, or risk becoming a subcontractor in someone else’s digital ecosystem. The professional services firms that act decisively today will own the playbooks, platforms, and profits of tomorrow.

The Great Reversal: Has AI Changed the Specialist vs. Generalist Debate?

For years, career advice followed a predictable rhythm: specialize to stand out. Be the “go-to” expert, the person who can go deeper, faster, and with more authority than anyone else. Then came the countertrend, where generalists became fashionable. The Harvard Business Review argued that broad thinkers, capable of bridging disciplines, often outperform specialists in unpredictable or rapidly changing environments.
HBR: When Generalists Are Better Than Specialists—and Vice Versa

But artificial intelligence has rewritten the rules. The rise of generative models, automation frameworks, and intelligent copilots has forced a new question:
If machines can specialize faster than humans, what becomes of the specialist, and what new value can the generalist bring?

The Specialist’s New Reality: Depth Is No Longer Static

Specialists once held power because knowledge was scarce and slow to acquire. But with AI, depth can now be downloaded. A model can summarize 30 years of oncology research or code a Python function in seconds. What once took a career to master, AI can now generate on demand.

Yet the specialist is not obsolete. The value of a specialist has simply shifted from possessing knowledge to directing and validating it. For example, a tax expert who understands how to train an AI model on global compliance rules or a medical researcher who curates bias-free datasets becomes exponentially more valuable. AI has not erased the need for specialists; it has raised the bar for what specialization means.

The new specialist must be both a deep expert and a domain modeler, shaping how intelligence is applied in context. Technical depth is not enough. You must know how to teach your depth to machines.

The Generalist’s Moment: From Connectors to Orchestrators

Generalists thrive in ambiguity, and AI has made the world far more ambiguous. The rise of intelligent systems means entire workflows are being reinvented. A generalist, fluent in multiple disciplines such as product, data, policy, and design, can see where AI fits across silos. They can ask the right questions:

  • Should we trust this model?
  • What is the downstream effect on the client experience?
  • How do we re-train teams who once performed this work manually?

In Accenture’s case, the firm’s focus on AI reskilling rewards meta-learners, those who can learn how to learn. This favors generalists who can pivot quickly across domains, translating AI into business outcomes.
CNBC: Accenture plans on exiting staff who can’t be reskilled on AI

AI gives generalists leverage, allowing them to run experiments, simulate strategies, and collaborate across once-incompatible disciplines. The generalist’s superpower, pattern recognition, scales with AI’s ability to expose patterns faster than ever.

The Tension: When AI Collapses the Middle

However, there is a danger. AI can also collapse the middle ground. Those who are neither deep enough to train or critique models nor broad enough to redesign processes risk irrelevance.

Accenture’s stance reflects this reality: the organization will invest in those who can amplify AI, not those who simply coexist with it.

The future belongs to T-shaped professionals, people with one deep spike of expertise (the vertical bar) and a broad ability to collaborate and adapt (the horizontal bar). AI does not erase the specialist or the generalist; it fuses them.

The Passionate Argument: Both Camps Are Right, and Both Must Evolve

The Specialist’s Rallying Cry: “AI needs us.” Machines can only replicate what we teach them. Without specialists who understand the nuances of law, medicine, finance, or engineering, AI becomes dangerously confident and fatally wrong. Specialists are the truth anchors in a probabilistic world.

The Generalist’s Rebuttal: “AI liberates us.” The ability to cross disciplines, blend insights, and reframe problems is what allows human creativity to thrive alongside automation. Generalists build the bridges between technical and ethical, between code and client.

In short: the age of AI rewards those who can specialize in being generalists and generalize about specialization. It is a paradox, but it is also progress.

Bottom Line

AI has not ended the debate. It has elevated it. The winners will be those who blend the curiosity of the generalist with the credibility of the specialist. Whether you are writing code, crafting strategy, or leading people through transformation, your edge is not in competing with AI, but in knowing where to trust it, challenge it, and extend it.

Takeaway

  • Specialists define the depth of AI.
  • Generalists define the direction of AI.
  • The future belongs to those who can do both.

Further Reading on the Specialist vs. Generalist Debate

  1. Harvard Business Review: When Generalists Are Better Than Specialists—and Vice Versa
    A foundational piece exploring when broad thinkers outperform deep experts.
  2. CNBC: Accenture plans on exiting staff who can’t be reskilled on AI
    A look at how one of the world’s largest consulting firms is redefining talent through an AI lens.
  3. Generalists
    This article argues that generalists excel in complex, fast-changing environments because their diverse experience enables them to connect ideas across disciplines, adapt quickly, and innovate where specialists may struggle.
  4. World Economic Forum: The rise of the T-shaped professional in the AI era
    Discusses how professionals who balance depth and breadth are becoming essential in hybrid human-AI workplaces.
  5. McKinsey & Company: Rewired: How to build organizations that thrive in the age of AI
    A deep dive into how reskilling, systems thinking, and organizational design favor adaptable talent profiles.

Innovation at Speed Requires Responsible Guardrails

The rush to adopt generative AI has created a paradox for engineering leaders in consulting and technology services: how do we innovate quickly without undermining trust? The recent Thomson Reuters forum on ethical AI adoption highlighted a critical point: innovation with AI must be paired with intentional ethical guardrails.

For leaders focused on emerging technology, this means designing adoption frameworks that allow teams to experiment at pace while ensuring that the speed of delivery never outpaces responsible use.

Responsible Does Not Mean Slow

Too often, “responsible” is interpreted as synonymous with “sluggish.” In reality, responsible AI adoption is about being thoughtful in how you build, embedding practices that reduce downstream risks and make innovation more scalable.

Consider two examples:

  • Model experimentation vs. deployment
    A team can run multiple experiments in a sandbox, testing how a model performs against client scenarios. But before deployment, they must apply guardrails such as bias testingdata lineage tracking, and human-in-the-loop validation. These steps do not slow down delivery; they prevent costly rework and reputational damage later.
  • Prompt engineering at scale
    Consultants often rush to deploy AI prompts directly into client workflows. By introducing lightweight governance—such as prompt testing frameworks, guidelines on sensitive data use, and automated logging, you create consistency. Teams can move just as fast, but with a higher level of confidence and trust.

Responsibility as a Product Opportunity

Using AI responsibly is not only a matter of compliance, it is a product opportunity. Clients increasingly expect trust and verification to be built into the services they adopt. For engineering leaders, the question becomes: are you considering verification as part of the product you are building and the services you are providing?

Examples where verification and trust become differentiators include:

  • OpenAI’s provenance efforts: With watermarking and provenance research, OpenAI is turning content authenticity into a feature, helping customers distinguish trusted outputs from manipulated ones.
  • Salesforce AI Trust Layer: Salesforce has embedded a Trust Layer for AI directly into its products, giving enterprise clients confidence that sensitive data is masked, logged, and auditable.
  • Microsoft’s Responsible AI tools: Microsoft provides built-in Responsible AI dashboards that allow teams to verify fairness, reliability, and transparency as part of the development lifecycle.
  • Google’s Fact-Check Explorer: By integrating fact-checking tools, Google is demonstrating how verification can be offered as a productized service to combat misinformation.

In each case, verification and trust are not afterthoughts. They are features that differentiate products and give customers confidence to scale adoption.

Guardrails Enable Speed

History offers parallels. In cloud adoption, the firms that moved fastest were not those who bypassed governance, but those who codified controls as reusable templates. Examples include AWS Control Tower guardrailsAzure security baselines, and compliance checklists. Far from slowing progress, these frameworks accelerated delivery because teams were not reinventing the wheel every time.

The same applies to AI. Guardrails like AI ethics boards, transparency dashboards, and standardized evaluation metrics are not bureaucratic hurdles. They are enablers that create a common language across engineering, legal, and business teams and allow innovation to scale.

Trust as the Multiplier

In consulting, speed without trust is a false economy. Clients will adopt AI-driven services only if they trust the integrity of the process. By embedding responsibility and verification into the innovation cycle, engineering leaders ensure that every breakthrough comes with the credibility clients demand.

Bottom Line

The message for engineering leaders is clear: responsible AI is not a constraint, it is a catalyst. When you integrate verification, transparency, and trust as core product features, you unlock both speed and scale.

My opinion is that in the next 12 to 24 months, responsibility will become one of the sharpest competitive differentiators in AI-enabled services. Firms that treat guardrails as optional will waste time fixing missteps, while those that design them as first-class product capabilities will win client confidence and move faster.

Being responsible is not about reducing velocity. It is about building once, building well, and building trust into every release. That is how innovation becomes sustainable, repeatable, and indispensable.

🕸️ The Creepiest Part: The Curve Is Still Rising

Somewhere between the thunderclaps of innovation and the quiet hum of data centers, a strange chill fills the air. It’s not the wind. It’s not the ghosts. It’s the sound of AI adoption still accelerating long after everyone thought it might slow down.

Because if there’s one thing scarier than a monster rising from the lab,
it’s realizing it’s still growing.

⚡ The Laboratory of Limitless Growth

Deep inside a candlelit castle, lightning flashes across the stone walls. Test tubes bubble with neural networks, and electricity hums through old copper wires. At the center of it all, Frankenstein’s monster stands hunched over a chalkboard.

On it are three jagged lines, one for the Internet, one for Mobile, and one, glowing ominously in neon green, for AI.

Dr. Frankenstein peers at the data through cracked goggles.
“Impossible,” he mutters, flipping through a pile of parchment labeled St. Louis Fed and eMarketer. “Every curve must flatten eventually. Even the mobile revolution reached a plateau.”

The monster turns, bolts sparking from his neck. “But master,” he says in a low rumble, “the curve… it’s still rising.”

📈 The Data Doesn’t Die

The Count appears in the doorway, cape sweeping dramatically behind him.

Dracula, the eternal observer of technological transformation, carries a tablet glowing with eerie blue light.
“Ah, my dear doctor,” he says, “you’re still studying your creature? You forget, I’ve watched centuries of human obsession. Printing presses, telegraphs, the telephone, the internet. Each one rose, and then rested.”

He smirks, his fangs catching the candlelight.
“But this new creation, this Artificial Intelligence, it refuses to sleep.”

Frankenstein gestures at the graph.
“See here, Count. The Internet took a decade to reach 1 billion users. Mobile took about five. But generative AI? It’s measured in months.”

Dracula’s eyes narrow.
“Yes, I read that in the mortal scholars’ scrolls. The Federal Reserve Bank of St. Louis found AI adoption outpacing every major technology in history, even those bloodthirsty smartphones.”
(source)

He taps his screen, revealing another chart.
“And look here, eMarketer reports that generative AI reached 77.8 million users in two years, faster than the rise of smartphones or tablets.”
(source)

The monster grunts. “Even the villagers use it now. They ask it for recipes, resumes, love letters.”

Dracula raises an eyebrow. “And blood type analyses, perhaps?”

They both laugh, the uneasy laughter of men who realize the experiment has escaped the lab.

🧛 The Curse of Exponential Curiosity

Dracula glides to the window, staring out into the storm. “You see, Frankenstein, mortals cannot resist their reflection. Once they taste a new tool that speaks back, they feed it endlessly. Every prompt, every query, every midnight whisper, more data, more growth.”

“Like feeding a beast,” Frankenstein says.

“Exactly,” Dracula grins. “And this one feeds itself. Every interaction strengthens it. Every mistake teaches it. Even their fears become training data.”

He twirls his cape dramatically. “You’ve not created a machine, my dear doctor. You’ve unleashed an immortal.”

⚙️ Why the Curve Keeps Climbing

The monster scribbles four words on the wall: “No friction. Infinite feedback.”

“That’s the secret,” Frankenstein explains. “Unlike the old revolutions, electricity, mobile, internet, AI doesn’t require factories or towers. It scales through code, not concrete. The more people use it, the more valuable it becomes. That’s why the line won’t flatten.”

Dracula nods. “A perfect storm of seduction: zero cost to start, instant gratification, and endless novelty. Even I couldn’t design a better addiction.”

Together, they stare at the graph again.
The AI line doesn’t level off. It bends upward.

The candles flicker. Somewhere, a server farm hums, millions of GPUs glowing like a field of jack-o’-lanterns in the dark.

🦇 The Night Is Still Young

Dracula turns to Frankenstein. “Do you fear what comes next?”

The doctor sighs. “I fear what happens when the curve stops rising and starts replacing.”

Dracula’s grin fades. For a moment, the immortal looks mortal.
“Perhaps,” he says, “but revolutions always come with a price. The villagers feared your monster once, and now they fear their own machines.”

Lightning cracks across the sky.

“But remember, Doctor,” he continues, “progress is a creature that cannot be killed, only guided.”

The monster, now quiet, whispers, “Then let’s hope we are still the ones holding the switch.”

🎃 The Bottom Line

AI’s adoption curve hasn’t flattened because we’re still discovering what it is.
It’s not a single invention like the phone or the PC. It’s a living layer that spreads through APIs, integrates into tools, and evolves faster than we can measure.

The mobile revolution connected us.
The AI revolution is re-creating us.

And if the trendlines are right, we’re still only at the first act of this gothic tale. The lab lights are still on. The storm still rages.

And somewhere, in the distance, the curve is still rising.

Further Reading (for those who dare look deeper):

The Role of the Directly Responsible Individual (DRI) in Modern Product Development

Why This Matters to Me

I have been in too many product discussions where accountability was fuzzy. Everyone agreed something mattered, but no one owned it. Work stalled, deadlines slipped, and frustration grew. I have also seen the opposite, projects where one person stepped up, claimed ownership, and pushed it forward.

That is why the Directly Responsible Individual (DRI) matters. It is more than a process borrowed from Apple or GitLab. It is a mindset shift toward empowerment and clarity.

What Is a DRI?

DRI is the single person accountable for a project, decision, or outcome. They may not do all the work, but they ensure it gets done. Steve Jobs made the practice famous at Apple, where every important task had a DRI so ownership was never in doubt. (handbook.gitlab.combitesizelearning.co.uk)

In my experience, this clarity is often the difference between projects that deliver and those that linger.

Strengths and Weaknesses

The DRI model works because it removes ambiguity. With a clear owner, decisions move faster, resources are coordinated, and teams feel empowered. Assigning someone as a DRI is a signal of trust: we believe you can make this happen. (tettra.com)

The risks are real too. A DRI without proper authority can be set up to fail. Too much weight on one individual can stifle collaboration or lead to burnout. And if organizations treat the role as a label without substance, it quickly collapses. (levelshealth.comdbmteam.com)

Examples in Practice

  • GitLab: Embeds DRIs across the organization, with clear documentation and real authority. (GitLab Handbook)
  • Levels Health: Uses DRIs in its remote-first culture, often as volunteers, supported by “buddies” and documentation. (Levels Blog)
  • Coda: Assigns DRIs or “drivers” for OKRs and pairs them with sponsors for balance. (Coda Blog)

The lesson is clear. DRIs succeed when paired with support and clear scope. They fail when given responsibility without authority.

Rolling Out DRIs

Adopting DRIs is a cultural shift, not just a process tweak. Some organizations roll them out gradually, starting with a few high-visibility initiatives. Others go all in at once. I lean toward gradual adoption. It builds confidence and proves impact before scaling.

Expect the early days to feel uncomfortable. Accountability brings clarity but also pressure. Some thrive, others resist. Over time, the culture shifts and momentum builds.

Change management matters. Leaders must explain why DRIs exist, provide support structures like sponsors, and create psychological safety. If failure leads to punishment, no one will volunteer.

The Clash with Command-and-Control IT

The DRI model often collides with the command-and-control style of traditional enterprise IT. Command-and-control relies on centralized approvals and shared accountability. The DRI approach decentralizes decisions and concentrates accountability.

I believe organizations that cling to command-and-control will fall behind. The only path forward is to create space for DRIs in product teams while still meeting enterprise compliance needs.

How AI Is Shaping DRIs

AI is becoming a force multiplier for DRIs. It can track progress, surface risks, and summarize input, giving individuals more time to focus on outcomes. But accountability cannot be outsourced to an algorithm. AI should make the DRI role easier, not weaker.

Empowerment and Conclusion

At its core, the DRI model is about empowerment. When someone is trusted with ownership, they rise to the challenge. They move faster, make decisions with confidence, and inspire their teams. I have seen people flourish under this model once they are given the chance.

For senior leaders, the next steps are clear. Identify accountability gaps, assign DRIs to a few strategic initiatives, and make those assignments visible. Pair them with sponsors, support them with AI, and commit publicly to backing them.

If you want empowered teams, faster results, and less ambiguity, DRIs are one of the most effective levers available. Those that embrace them will build stronger cultures of ownership. Those that resist will remain stuck in command and control. I know which side I want to be on.

Why DIY: A ChatGPT Wrapper Isn’t the Best Enterprise Strategy

TL;DR: The Buy vs Build

ChallengeBuild (DIY Wrapper)Buy (Enterprise Solution)
CostTens to hundreds of thousands in build plus ongoing maintenance (applifylab.comsoftermii.commedium.com)Predictable subscription model with updates and support
SecurityVulnerable to prompt injection, data leaks, and evolving threats (en.wikipedia.orgwired.comwsj.com)Enterprise-grade safeguards built in such as encryption, RBAC, and monitoring
RewardLimited differentiation and fragile ROIFaster time to value, scalable, and secure

Do not fall for the trap of thinking “we are different” or “we can do this better with our framework.” Building these wrapper experiences has become the core product that multi-billion-dollar model makers are selling. If this is an internal solution, think very carefully before taking that path. Unless your wrapper directly connects to a true market differentiator, it is almost always wasted effort. And even then, ask whether it can simply be implemented through a GPT or an MCP tool that already exists in commercial alternatives like Microsoft Copilot, Google Gemini, or ChatGPT Enterprise.

This is a textbook example of a modern buy vs build decision. On paper, building a ChatGPT wrapper looks straightforward, it’s just an API after all right. In practice, the costs and risks far outweigh the benefits compared to buying a purpose-built enterprise solution.

Don’t fall for the trap that “we are different” or “we can do this better with our framework” as building these experiences have become the core experience these multi-billion dollar model makers are now selling. If this is an internal solution, thing hard before falling for this trap. Unless this is somehow linked to your market differentiator. Even then think can this simply be a GPT or a MCP tool used by a commercial alternative like Co-Pilot, Gemini, or ChatGTP enterprise.

1. High Costs Upfront with Diminishing Returns

Even a seemingly modest AI wrapper quickly escalates into a significant investment. According to ApplifyLab, a basic AI wrapper app often costs $10,000 to $30,000, while a mid-tier solution ranges from $30,000 to $75,000, and a full enterprise-level implementation can exceed $75,000 to $200,000+, excluding ongoing costs like infrastructure, CI/CD, and maintenance (applifylab.com).

Industry-wide estimates suggest that launching complete AI-powered software, particularly in sectors such as fintech, logistics, or healthcare, can cost anywhere from $100,000 to $800,000+, driven by compliance, security, robust pipelines, and integration overhead (softermii.com).

Even just a proof-of-concept (POC) to test value can run $50,000 to $150,000 with no guarantee of ROI (medium.com).

Buy vs Build Takeaway: By the time your wrapper is ready for production, the cost-to-benefit ratio often collapses compared to simply adopting an enterprise-ready platform.

2. Security Risks with Low Visibility and High Stakes

DIY wrappers also tend to fall short on enterprise-grade security.

  • Prompt Injection Vulnerabilities
    LLMs are inherently vulnerable to prompt injection attacks where crafted inputs (even hidden in documents or websites) can manipulate AI behavior or expose sensitive data. OWASP has flagged prompt injection as the top risk in its 2025 LLM Applications report (en.wikipedia.org).
    Advanced variations, such as prompt-to-SQL injection, can compromise databases or trigger unauthorized actions via middleware such as LangChain (arxiv.org).
    Real-world cases have already shown indirect prompt injection manipulating GPT-powered systems such as Bing chat (arxiv.org).
  • Custom GPT Leaks
    OpenAI’s custom “GPTs” have been shown to leak initialization instructions and uploaded files through basic prompt injection, even by non-experts. Researchers easily extracted core data with “surprisingly straightforward” prompts (wired.com).
  • Broader LLM Security Risks
    Generative AI systems are now a target for malicious actors. Researchers have even demonstrated covert “AI worms” capable of infiltrating systems and exfiltrating data through generative agents (wired.comwsj.com).
    More broadly, the WSJ notes that LLMs’ open-ended nature makes them susceptible to data exposure, manipulation, and reliability problems (wsj.com).

Building your own ChatGPT wrapper may feel like innovation, but it often ends up as a costly distraction that delivers little competitive advantage. Buying enterprise-ready solutions provides scale, security, and speed while allowing your team to focus on higher-value work. In the modern AI landscape, where risks are growing and the pace of change is accelerating, this is one of the clearest examples of why buy often beats build.

#AI #DigitalTransformation #CTO

Strategic Planning vs. Strategic Actions: The Ultimate Balancing Act

Let’s be blunt: If you are a technology leader with a brilliant strategy deck but nothing shipping, you are a fraud. If you are pumping out features without a clear strategy, you are gambling with other people’s money. The uncomfortable truth is that in tech leadership, vision without execution is delusion, and execution without vision is chaos.

Think about the companies we have watched implode. Kodak literally invented the digital camera but failed to commit to shifting their business model in time (Investopedia). Blockbuster had a roadmap for streaming before Netflix took off but never acted decisively, choosing comfort over speed. Their strategies looked great on paper right up until the moment they became cautionary tales.

The reverse problem of being all action and no plan is just as dangerous. Teams that constantly chase shiny objects, launch half-baked features, or pivot every few months might look busy, but they are building on quicksand. Yes, they might get lucky once or twice, but luck does not scale. Without a coherent plan, every success is an accident waiting to be reversed.

The leaders who get it right treat plans and actions as inseparable. Procter & Gamble’s OGSM framework aligns global teams on objectives, strategies, and measurable actions (Wikipedia). The Cascade Model starts with vision and values, then connects them directly to KPIs and delivery timelines (Cascade). Best Buy’s turnaround in the early 2010s, with price matching Amazon, investing in in-store experience, and expanding services, worked because it was both a clear plan and a relentless execution machine (ClearPoint Strategy). Nike’s 2021–2025 roadmap is another example, with 29 public targets supported by measurable actions (SME Strategy).

If you are leading tech without both vision and velocity, you are either drifting or spinning in place. Neither wins markets. Your job is not just to make a plan, it is to make sure the plan lives through your delivery cadence, your roadmap decisions, and your metrics.

Applying the Balance to AI Adoption

The AI revolution is no longer approaching, it is here. Nearly half of Fortune 1000 companies have embedded AI into workflows and products, shifting from proving its value to scaling it across the organization (AP News). But AI adoption demands more than flashy pilots. It requires the same balance of strategic planning and relentless execution.

Many organizations are experiencing AI creep through grassroots experiments. A recent survey found that 72% of employees using AI report saving time weekly, yet most businesses still lack a formal AI strategy (TechRadar). This gap is risky. Spontaneous adoption delivers early wins, but without an intentional rollout these remain one-off tricks rather than transformative advances.

The shift is forcing companies to formalize leadership. Chief AI Officers are now often reporting directly to CEOs to steer AI strategy, manage risks, and align use cases with business priorities (The Times). Innovators like S&P Global are mandating AI training, moving developer AI use from 7% to 33% of code generation in months, and building “Grounding Agents” for autonomous research on proprietary data (Business Insider).

Steering AI at scale requires a framework, not spontaneity. Gartner’s AI roadmap outlines seven essential workstreams, from strategy, governance, and data to talent, engineering, and value portfolios, so leaders can prioritize AI with clarity and sequence (Gartner). AI adoption also succeeds only when trust, transparency, and cultural fit are embedded, particularly around fairness, peer validation, and organizational norms (Wendy Hirsch).

Introducing AI into your product development process without a strategic scaffold is like dropping nitro on a house of cards. You might move fast, but any misalignment, governance gap, or cultural mismatch will bring it all down. The antidote is to anchor AI initiatives in concrete business outcomes, empower cross-functional AI working groups, invest in upskilling and transparency, and govern with clear risk guardrails and metrics.

Your Next Action

In your experience, which derails AI transformation faster: lack of strategic planning or reckless execution without governance? Share the AI initiatives that flamed out or flipped your company upside down, and let us unpack what separates legendary AI adoption from another shiny pilot. Because in tech leadership, if vision and velocity are not joined in your AI strategy, you are either running illusions or waiting for a miracle.

Widen Your AI Surface Area and Watch the Returns Compound

Cate Hall’s surface-area thesis is simple: serendipity = doing × telling. The more experiments you run and the more publicly you share the lessons, the more good luck finds you. (usefulfictions.substack.com)

Generative AI is the ultimate surface-area amplifier. Models get cheaper, new use cases emerge weekly, and early wins snowball once word spreads. Below is a playbook, rooted in real-world data, for technology leaders who want to stay ahead of the AI wave and translate that edge into concrete gains for their organizations and their own careers.

1. Run More (and Smaller) Experiments

TacticRecent proof-point
Quarterly hack-days with a “ship in 24 hours” rule.Google Cloud’s Agentic AI Day gathered 2,000+ developers who built 700 prototypes in 30 hours, earning a Guinness World Record and seeding multiple production pilots. (blog.googleThe Times of India)
30-day “two-pizza” squads on nagging pain points.Walmart’s internal “Associate” and “Developer” super-agents started as 30-day tiger-teams and are now rolling out across stores and supply-chain tools. (ReutersForbes)

Organizational upside: frequent, low-cost trials de-risk big bets and surface unexpected wins early.
Career upside: you become the executive who can reliably turn “weekend hacks” into measurable ROI.

2. Create an Adoption Flywheel

“AI is only as powerful as the people behind it.” – Telstra AI team

Levers

  1. Default-on pilots. Telstra rolled out “Ask Telstra” and “One Sentence Summary” to every frontline agent; 90% report time-savings and 20% fewer follow-up calls. (Microsoft)
  2. Communities of practice. Weekly show-and-tell sessions let power users demo recipes, prompts, or dashboards.
  3. Transparent metrics. Publish adoption, satisfaction, and hours-saved to neutralise fear and spark healthy competition.

Organizational upside: time-to-value shrinks, shadow-IT falls, and culture shifts from permission-based to experiment-by-default.
Career upside: you gain a track record for change management, a board-level differentiator.

3. Build Platforms, Not One-Offs

Platform moveResult
Expose reusable agent frameworks via internal APIs.Walmart’s “Sparky” customer agent is just one of four AI “super-agents” that share common services, accelerating new use-case launches and supporting a target of 50% online sales within five years. (Reuters)
Offer no-code tooling to frontline staff.Telstra’s agents let 10k+ service reps mine CRM history in seconds, boosting first-contact resolution and agent NPS. (Telstra.comMicrosoft)

Organizational upside: every new bot enriches a shared knowledge graph, compounding value.
Career upside: platform thinking signals enterprise-scale vision, which is catnip for CEO succession committees.

4. Broadcast Wins Relentlessly

“Doing” is only half the surface-area equation; the other half is telling:

  • Internal road-shows. Add Ten-minute demos into your team meetings.
  • External storytelling. Publish case studies or open-source prompt libraries to attract talent and partners.
  • Metric snapshots. Microsoft found Copilot adoption surged once leaders shared that 85% of employees use it daily and save up to 30% of analyst time. (MicrosoftThe Official Microsoft Blog)

Organizational upside: shared vocabulary and proof accelerate cross-team reuse.
Career upside: your public narrative positions you as an industry voice, opening doors to keynote slots, advisory boards, and premium talent pipelines.

5. Quantify the Payoff

OutcomeEvidence you can quote tomorrow
ProductivityUK government Copilot trial: 26 minutes saved per employee per day across 14,500 staff. (Barron’s)
Client speedMorgan Stanley advisors auto-generate meeting summaries and email drafts, freeing prep time for higher-margin advice. (Morgan Stanley)
RevenueWalmart expects agentic commerce to accelerate its push to $300 B online revenue. (Reuters)

Use numbers like these to build cost-benefit cases and secure funding.

6. Personal Career Playbook

Focus AreaActionWhy It Pays Off
Public CredibilityShare what you learn, whether on LinkedIn, Github, YouTube, or other channel.Consistently sharing insights brands you as a thought leader and attracts high-caliber talent.
Hands-On InsightPair with an engineer or data scientist for one sprint each quarter.Staying close to the build process sharpens your intuition about real-world AI capabilities and constraints.
Continuous LearningCommit to one AI-focused certification or course each year.Ongoing education signals a growth mindset and keeps your expertise relevant in a fast-moving field.

Make your own luck

Boosting your AI surface area is not about chasing shiny tools. It is a disciplined loop of many small bets + aggressive storytelling. Organizations reap faster innovation, richer data moats, and happier talent. Leaders who orchestrate that loop accrue reputational capital that outlives any single technology cycle.

Start widening your surface area today, before the next wave passes you by.

Beyond Busywork: Rethinking Productivity in Product Development

We have all seen the dashboards: velocity charts, commit counts, ticket throughput.
They make for tidy reports. They look great in an executive update. But let’s be honest, do they actually tell us if our teams are building the right things, in the right way, at the right time?

A recent Hacker News discussion, Let’s stop pretending that managers and executives care about productivity, hit a nerve. It pointed out a hard truth: too often, “productivity” is measured by what is easy to count rather than what actually matters. For technology leaders, this raises a critical question: are we optimizing for activity or for impact?

Before we can improve how we measure productivity, we first need to understand why so many traditional metrics fall short. Many organisations start with good intentions, tracking indicators that seem logical on the surface. Over time, these measures can drift away from reflecting real business value and instead become targets in their own right. This is where the gap emerges between looking productive and actually creating outcomes that matter.

We have seen this play out in practice. Atlassian warns on relying heavily on raw JIRA velocity scores when they realized it encouraged teams to inflate story point estimates rather than improve delivery outcomes. Google’s engineering teams have spoken about the risk of “metric gaming” and have stressed the importance of pairing speed indicators with measures of impact and reliability.

Why Shallow Metrics Fail

Several years ago, I was in a leadership meeting where a project was declared a success because the team had delivered 30% more story points than the previous quarter. On paper, it was an impressive jump. In reality, those features did not move the needle on adoption, customer satisfaction, or revenue. We had measured output, not outcome.

High-functioning teams do not just ship more. They deliver meaningful business value. That is where our measurement frameworks need to evolve.

DORA Metrics: A Better Starting Point

The DevOps Research and Assessment (DORA) group has done extensive research to identify four key metrics that balance speed and stability:

  1. Deployment Frequency – How often you deploy code to production.
  2. Lead Time for Changes – How quickly a change moves from code commit to production.
  3. Change Failure Rate – How often deployments cause a failure in production.
  4. Mean Time to Recovery (MTTR) – How fast you recover from a failure.

These are powerful because they connect process efficiency with system reliability. For example, I joined a project that was deploying only once a quarter. While this schedule reduced change risk, it also created long lead times for customer-facing features and made responding to feedback painfully slow. Over the course of six months, we incrementally improved our processes, automated more of our testing, and streamlined our release management. The result was moving to a two-week deployment cycle, which allowed the team to deliver value faster, respond to market needs more effectively, and reduce the risk of large-scale release failures by making changes smaller and more manageable.

The caution: if you treat DORA as a leaderboard, you will get teams “optimizing” metrics in ways that undermine quality. Used correctly, they are a diagnostic tool, not a performance scorecard.

Connecting DORA to Business Outcomes

For technology leaders, DORA metrics should not exist in isolation. They are most valuable when they are tied to business results that the board cares about.

  • Deployment Frequency is not just about speed, it is about how quickly you can respond to market shifts, regulatory changes, or customer feedback.
  • Lead Time for Changes impacts time-to-revenue for new features and directly affects competitive advantage.
  • Change Failure Rate affects customer trust and brand reputation, both of which have measurable financial consequences.
  • MTTR influences client retention, contractual SLAs, and the ability to contain operational risk.

When framed this way, engineering leaders can make the case that improving DORA scores is not just a technical goal, but a growth and risk mitigation strategy. This connection between delivery performance and commercial outcomes is what elevates technology from a support function to a strategic driver.

Innovative Metrics to Watch

Forward-thinking companies are experimenting with new ways to measure productivity:

  • Diff Authoring Time (DAT) – Used at Meta, this tracks how long engineers spend authoring a change. In one experiment, compiler optimisations improved DAT by 33%, freeing up engineering cycles for higher-value work.
  • Return on Time Invested (ROTI) – A simple but powerful concept: for every hour spent, what is the measurable return? This is especially useful in evaluating internal meetings, process reviews, or new tool adoption.

The Pitfalls of Over-Measurement

There is a dark side to metrics. Wired recently called out the “toxic” productivity obsession in tech where every keystroke is tracked and performance is reduced to a spreadsheet. It is a quick path to burnout, attrition, and short-term thinking.

As leaders, our job is not to watch the clock. It is to create an environment where talented people can do their best work, sustainably.

Takeaway

Productivity in product development is not about being busy. It is about delivering lasting value.
Use DORA as a starting point, augment it with reliability, developer experience, and business outcome metrics, and experiment with emerging measures like DAT and ROTI. But always remember: metrics are there to inform, not to define, your team’s worth.

Thoughts

The best technology organizations measure what matters, discard vanity metrics, and connect engineering performance directly to business value. Metrics like DORA, when used thoughtfully, help teams identify bottlenecks and improve delivery. Innovative measures such as DAT and ROTI push our understanding of productivity further, but they only work in cultures that value trust and sustainability. As technology leaders, our challenge is to ensure that our measurement practices inspire better work rather than simply more work.